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Abstract

This paper discusses the Monte Carlo maximum likelihood method of estimating
stochastic volatility (SV) models. The basic SV model can be expressed as a linear state
space model with log chi-square disturbances. The likelihood function can be approxi-
mated arbitrarily accurately by decomposing it into a Gaussian part, constructed by the
Kalman filter, and a remainder function, whose expectation is evaluated by simulation.
No modifications of this estimation procedure are required when the basic SV model is
extended in a number of directions likely to arise in applied empirical research. This
compares favorably with alternative approaches. The finite sample performance of the
new estimator is shown to be comparable to the Monte Carlo Markov chain (MCMC)
method. ( 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The empirical distributions of financial time series differ substantially from
distributions obtained from sampling independent homoskedastic Gaussian
variables. Unconditional density functions exhibit leptokurtosis and skewness;
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1The Quasi-Maximum Likelihood (QML) method of Harvey et al. (1994), and GMM methods of
Andersen and S+rensen (1996) are examples of this category.

time series of stock returns show evidence of volatility clustering; and squared
returns exhibit pronounced serial correlation whereas little or no serial depend-
ence can be detected in the return process itself. These empirical regularities
suggest that the behavior of financial time series may be captured by a model
which recognizes the time varying nature of return volatility, as follows:
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specifications of this form are known as ARCH models and have achieved
widespread popularity in applied empirical research (Bollerslev et al., 1992;
Bollerslev et al., 1993; Bera and Higgins, 1993). Alternatively, volatility may be
modelled as an unobserved component following some latent stochastic process,
such as an autoregression. Models of this kind are known as stochastic volatility
(SV) models (Taylor, 1994; Ghysels et al., 1996; Shephard, 1996).

Despite their intuitive appeal, SV models have been used less frequently than
ARCH models in empirical applications. This is due to the difficulties associated
with the estimation of SV models. Unlike ARCH models, where the likelihood
function can be evaluated exactly, the likelihood function of an SV model is hard
to construct. Existing estimation procedures can be subdivided into two groups:
(i) methods that attempt to build the full likelihood function, and (ii) methods
which rely on alternative, usually less efficient principles.1

Several propositions have been made as to how the full likelihood function
may be evaluated. Kim et al. (1996) show how the likelihood can be constructed
when a mixture of normals is used to approximate the density of the distur-
bances. Jacquier et al. (1994) have proposed a Bayesian approach to the
estimation of SV models using the Monte Carlo Markov chain (MCMC)
technique. Fridman and Harris (1996) show how the extended Kalman filter can
be used to perform numerical integration. Finally, Danielsson (1994a) suggested
that accurate approximations to the likelihood function can be obtained by
means of importance sampling.

Recently, Shephard and Pitt (1997) and Durbin and Koopman (1997, 1998)
designed methods for constructing the likelihood function for general state
space models using Monte Carlo simulation techniques; thereafter referred to as
Monte Carlo likelihood (MCL). This paper shows how the general concepts can
be implemented efficiently for the standard linear SV model and for a variety of
SV model extensions. The properties of the MCL estimates are compared with
other approaches by using Monte Carlo experiments and empirical illustrations.

The crucial feature of the MCL approach is the formulation of the SV model
in a linear state space form with ln(s2

1
) disturbances in the measurement
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equation. The question of how to treat zero observations — which will
make ln(r2

t
) ill-defined — is addressed explicitly. The linear state space

form allows very powerful algorithms for filtering and smoothing to be utilized,
and more generally, to draw upon a vast body of knowledge on structural time
series models (Harvey, 1989). The gain is also due to the elegant form of the
likelihood specification as put forward by Durbin and Koopman (1997) in which
the log likelihood is the sum of the Gaussian log likelihood (i.e. QML) and
a correction for the departures from Gaussian assumptions. Monte Carlo
simulation is only employed to construct the correction part of the likelihood
function.

Apart from reducing the computational effort considerably (while attaining
finite sample efficiency), the algorithm has several distinct advantages. First, the
sampling variation can be reduced giving arbitrarily close approximations to
the true likelihood function value. Thus standard likelihood ratio tests can be
constructed. This is likely to be very useful since numerical standard errors of
model parameters often leave much to be desired.

Secondly, a wide range of extensions can be addressed with trivial modifica-
tions of the estimation procedure due to the fact that the state space form is
retained. Thus, several well-known extensions of the basic SV model can be
examined: fat tailed distributions for the mean equation disturbances, SV in the
mean specification, correlated return and volatility processes, as well as stochas-
tic seasonal components, effects of dummy and exogenous explanatory variables
may be explored in detail.

The paper is organized as follows. Section 2 discusses in more detail the
various aspects of estimation and inference in the context of SV models. In
Section 3 we describe the Monte Carlo likelihood (MCL) estimation method
while Section 4 compares its finite sample performance with existing techniques
by means of an extensive Monte Carlo experiment and some empirical data
examples. Section 5 illustrates how the method can be applied to the estimation
of models with fat-tails, explanatory variables and non-zero correlation. Sec-
tion 6 concludes.

2. Stochastic volatility model

Consider the stochastic volatility model:
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t
is the mean adjusted return on an asset. Since many financial

time series exhibit little or no dynamic behavior in the mean, but pronounced
serial dependence in the variance (Bollerslev et al., 1992) the estimation of k

t
will

not be the subject of interest in the present context. The average volatility level is
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2Thus the logarithm of variance follows a discrete time analog of the Orstein—Uhlenbeck process
often used in the context of option pricing (Hull and White, 1987; Renault and Touzi, 1996).

denoted by pN , and the mean and variance equation disturbances e
t
and g

t
may be

contemporaneously correlated.
Despite a very parsimonious representation, this model captures most of the

empirical regularities found in financial time series (Ghysels et al., 1996). An
attractive feature of specification (1) is the possibility of linearizing the model. By
taking logarithms of the squared mean adjusted returns one obtains2:
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If the original mean equation disturbance, m
t
, is standard normal, e

t
follows the

ln(s2
1
) distribution whose mean and variance are known to be !1.27 and n2/2,

respectively. Notice, that once the transformation is accomplished, the informa-
tion regarding the correlation coefficient, o is lost, but can be recovered by
conditioning on the signs of the original observations (Harvey and Shephard,
1996). Estimation of o is addressed in Section 5.4.

Harvey et al. (1994) suggested a Quasi-Maximum Likelihood (QML) method
of estimating the model based on the Kalman filter. Assuming joint conditional
normality of (e

t
, g

t
), Eq. (2) represents the measurement and transition equations

of the general linear state space model, details of which can be found in the
Appendix A. Once the model is in the state space form, the advantages of this
approach become evident: (i) explanatory variables can be easily incorporated
into the variance equation, (ii) more general ARMA processes can be assumed
for the evolution of the latent variable, (iii) missing or irregularly spaced
observations can be handled, and (iv) generalisations to the multivariate case
are straightforward.

The QML method approximates the distribution of e
t
by N(!1.27, p2/2),

while e
t
is far from being Gaussian. In fact, its density is given by

p
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1
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Fig. 1 shows in how far e
t
deviates from its normal approximation which implies

that the QML estimator is likely to have poor small sample properties even
though it is consistent. Note the high degree of skewness and the long tail in the
negative half-line. Large negative values reflect inliers in r

t
, which may arise in

empirical applications with high frequency data.
Several other estimation techniques achieved prominent attention in the

literature. First, various method of moments (MM) estimators have been sug-
gested by Taylor (1986), Melino and Turnbull (1990), and Andersen and
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Fig. 1. The ln(s2
1
) density and the normal approximation N(!1.27, p2/2).

S+rensen (1996), among others. MM estimators avoid the problem associated
with the linearization of the model as well as the evaluation of the likelihood.
They are not difficult to implement and to generalize but the efficiency of these
estimators is known to be suboptimal to the likelihood-based method of
inference (Jacquier et al., 1994; Andersen and S+rensen, 1996). Gallant and
Tauchen (1996) have developed a MM procedure which matches the scores of an
auxiliary model via simulation (SMM). They claim that, if the auxiliary model is
a good approximation to the distribution of the data, the MM estimator is as
efficient as maximum likelihood. However, none of the MM estimation methods
provide an estimate of the instantaneous volatility p2

t
throughout the sample,

t"1,2,¹, so that an additional form of estimation is required. For instance,
Andersen (1994) and Ghysels and Jasiak (1996) use MM techniques to estimate
the parameters and they use the Kalman filter to obtain volatility estimates.

Secondly, Kim et al., (1996) suggest to approximate the distribution of e
t
by

a mixture of normals. Given a particular mixture, the likelihood can be com-
puted via the prediction error decomposition since the linear structure of the
model is essentially retained. An important drawback of this method is that no
matter how many mixture components are used, the mixture of normals cannot
give a good approximation to the tail behavior of the ln(s2) distribution. In
addition, the convergence of the algorithm is likely to be very sensitive to the
number and weight of individual mixture components (Jacquier et al., 1994).

Thirdly, Fridman and Harris (1996) suggest that the non-Gaussianity of the
measurement equation disturbances can be handled by means of a ‘brute force’
numerical integration. In a Monte Carlo study — similar to the one presented
here — the authors demonstrate how Kitagawa’s (1987) extended Kalman filter
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can be applied in this context. By retaining the state space form, Fridman and
Harris (1996) estimation technique offers the same advantages as the MCL.
Some of the disadvantages of this method consist of computational inefficiencies
(the extended Kalman filter is known to be rather slow) and the necessity to
choose a priori a fixed grid, over which the volatility process will be integrated.
This creates a trade-off between numerical accuracy on the one hand, and
computational efficiency on the other. It is conceivable, that in some instances
an optimal grid may not exist. For instance, when estimating the volatility
process around the stock market Crash of ’87 the grid selection procedure
proposed by Fridman and Harris (1996) will either lead to a very coarse grid
over the entire volatility range, or place no probability weight on the high-
volatility state during the Crash.

A Bayesian approach to the estimation of SV models using a Monte Carlo
Markov chain (MCMC) technique was developed by Jacquier et al. (1994), JPR
thereafter. They have performed extensive simulation experiments which dem-
onstrate that MCMC is superior to QML and MM estimation techniques
across a wide range of parameter values. However, this technique has some
undesirable features. The procedure is quite involved, requiring a large amount
of computer intensive simulations. In addition, the method needs to be
nontrivially modified for the extensions like the introduction of explanatory
variables, alternative processes for the evolution of variance, or multivariate
specifications (Jacquier et al., 1995). Shephard and Pitt (1997) have constructed
an efficient block MCMC algorithm for performing Bayesian inference on
general nonlinear and non-Gaussian state space models of which the SV model
(1) is a special case. They conclude that the performance of the multiblock
MCMC methods outperforms the single block approach of JPR in terms of
computational efficiency.

Finally, Danielsson (1994a) proposed to estimate the SV model by the Monte
Carlo likelihood (MCL) estimation method. His accelerated Gaussian impor-
tance sampler (AGIS) algorithm is a simulation-based technique whose time
requirement and precision is on par with MCMC. However, the method is
difficult to generalize and remains computationally expensive largely due to the
failure of the technique to exploit the linear structure resulting from the trans-
formation (2).

The present paper discusses how a very efficient MCL estimator can be
obtained with retaining the linear state space form. Following the work of
Shephard and Pitt (1997) and Durbin and Koopman (1997, 1998) we demon-
strate that MCL is a viable alternative to the MCMC technique. It is shown
that: (i) the finite sample performance of the MCL parameter estimators is at
least as good as the one obtained by MCMC; (ii) the computational require-
ment for MCL is smaller than MCMC; (iii) only trivial modifications are
required to the MCL when the basic model is extended in a number of
interesting directions; (iv) inference in the SV model can be performed by means
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of Likelihood Ratio test statistics because the likelihood function can be ap-
proximated arbitrarily close.

3. Monte Carlo Maximum likelihood estimation

3.1. The general algorithm

Taking logarithms of the squared residuals in Eq. (1), that is y
t
"ln(r2

t
), gives

the SV model in the linear state space form (2) but invokes an additional
difficulty: the disturbance term in the measurement equation becomes non-
Gaussian. The Appendix A discusses the general linear state space model and
the associated algorithms for filtering, smoothing and simulation. The Monte
Carlo likelihood (MCL) approach for non-Gaussian models such as the SV
model is based on importance sampling techniques (Ripley, 1987). Danielsson
(1994a) and Shephard and Pitt (1997) consider generating samples from an
approximating Gaussian model. Durbin and Koopman (1997) demonstrate that
the log likelihood function of state space models with non-Gaussian measure-
ment disturbances can be simply expressed as
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) density in the case of the basic

SV model, p
G
(eDt) is the Gaussian density of the measurement disturbances of

the approximating model and E
G

refers to expectation with respect to the
so-called importance density p

G
(eDy, t) associated with the approximating

model. Eq. (4) reveals that only importance samples are required for the
measurement disturbances e"(e

1
, e

2
,2, e

T
)@. Furthermore, Eq. (4) shows that

the non-Gaussian log likelihood function can be expressed as the log likelihood
function of the Gaussian approximating model plus a correction for the depar-
tures from the Gaussian assumptions in relation to the true model. The unbiased
estimate of Eq. (4) is given by:

ln Ķ (t)"ln ¸
G
(yDt)#ln wN #
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w
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where wN and s2
w

are computed by the algorithm of Durbin and Koopman (1997):

1. Choose a Gaussian approximating model from which a feasible sampling
scheme can be deducted based on the importance density p

G
(eDy, t); see

Section 3.2 for details.
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3A similar suggestion is made by Shephard and Pitt (1997) but their argument is based on finding
an approximating Gaussian model which produces posterior mode estimates for the true model.

2. Compute (and store) ln ¸
G
(yDt) and eL"E(e D y, t) for the approximating

model via the Kalman filter smoother; see Appendix A for details.
3. Generate a sample e(i)"(e(i)

1
,2, e(i)

T
)@ from the importance density p

G
(e D y, t)

referring to the approximating model of step 1. A specific version of the
simulation smoother of de Jong and Shephard (1995) is used to generate this
sample; see Appendix A for details.

4. Construct an antithetic sample: eJ (i)"2eL!e(i).
5. Compute (and store)
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6. Repeat steps 3—5 until N samples are drawn.
7. Calculate wN and s2

w
as the sample mean and variance of w(i), i"1,2, N.

The MCL estimates of model parameters, t are obtained by numerical
optimization of Eq. (5). The log likelihood function of the approximating model,
ln ¸

G
(y D t), can be used to obtain starting values. The choice of N governs the

accuracy of the approximation to the likelihood function: as N increases, the
approximation becomes more accurate. For practical purposes we find that
N"5 is sufficient; see the detailed discussion in Section 4 below.

3.2. Implementation

The importance sampling density p
G
(e D y, t), could be based on the approxi-

mating SV model as given by Eq. (2) with e
t
&N(0, H

t
) where H

t
"n2/2, for

t"1,2, ¹. However, Durbin and Koopman (1997) argue that a better import-
ance density is obtained from Eq. (2) with e

t
&N(0, HI

t
) where the scalar vari-

ances HI
t
’s are chosen so as to make the differences between the log densities

ln p
-/ s2

1
(e D t) and ln p

G
(e D t) as constant as possible in the neighbourhood of

eL"E(e D y, t).3 The smoothed error vector eL"(eL
1
,2, eL

T
)@ is calculated by the

Kalman filter smoother. Details of which can be found in the Appendix.
Intuitively, large negative values of eL

t
would require high values of HI

t
in order

for the slopes of the densities in Fig. 1 to be roughly equal, for t"1,2, T. The
choice of the variances HI

t
’s of the approximating model is determined by

equalizing the derivatives of the log densities at eL :

1
2
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Table 1
Equalising density slopes: a recursive solution

t
1

t
2

t
3

t
4

t
5

t
6

t
6

t
8

t
9

d(1) 3.13 3.18 3.22 3.22 3.24 3.26 3.28 3.28 3.29
d(2) 1.31 1.42 1.52 1.49 1.55 1.60 1.63 1.65 1.68
d(3) 0.26 0.28 0.29 0.30 0.30 0.31 0.31 0.31 0.31
d(4) 0.14 0.13 0.11 0.13 0.11 0.09 0.09 0.08 0.07
d(5) 0.05 0.04 0.03 0.04 0.03 0.02 0.02 0.02 0.01
d(6) 0.02 0.02 0.01 0.01 0.01 0.01 0.01 4e—3 3e—3
d(7) 0.01 0.01 0.00 0.01 3e—3 2e—3 1e—3 1e—3 7e—4
d(8) 5e—3 3e—3 1e—3 2e—3 1e—3 4e—4 3e—4 2e—4 2e—4
d(9) 2e—3 1e—3 4e—4 7e—4 3e—4 1e—4 8e—5 6e—5 3e—5
d(10) 1e—3 5e—4 1e—4 3e—4 1e—4 3e—5 2e—5 1e—5 8e—6

Note: This table reports the values of the metric d(k)"¹~1+
t
DHI (k)

t
!HI (k~1)

t
D for k"1,2, 10

iterations of the simulated SV model with ¹"1000 and across several parameter triplets
t
i
"(pg,/,a)

i
, the values of which are reported in Table 2. Small values of d(k) indicate that the

individual elements of the variance vector HI are not changing considerably across further iterations,
i.e. HI (k)

t
PHM

t
.

where the left-hand side is the derivative of Eq. (3) and the right-hand side is the
derivative of the Gaussian density. This leads to a set of ¹ equations:

HI
t
"

2eL
t

eeL t!1
t"1,2,¹. (6)

Note that Eq. (6) ensure the nonnegativity of HI
t

since the numerator and
denominator are of the same sign for any value of eL

t
. The set of nonlinear Eq. (6)

is solved for HI
t
by iteration, starting at HI (0)

t
"n2/2∀t. Given a parameter vector

t, we iterate K times between computing eL
t
(using the Kalman filter smoother)

and computing HI (k)
t

by Eq. (6), for k"1,2, K. This procedure is performed
only once in Step 1 of the algorithm of Section 3.1. Naturally, when the
parameter vector t changes, the algorithm needs to be repeated.

Table 1 shows rapid convergence results across a range of parameter values
for the simulated SV model. Choosing the metric d(k)"¹~1+

t
DHI (k)

t
!HI (k~1)

t
D to

describe successive changes in the variance vector, HI , we find that after about
six-to-eight iterations the elements of the variance vector cease to fluctuate, i.e.
HI (k)

i
PHM

t
. The individual elements of the variance vector HM are now different

across t"1,2, ¹.
Fig. 2 is a histogram of HM

t
’s from a simulated SV process (¹"1000) governed

by a set of parameters t
5
"(pN , /, pg)5, the numerical values of which are

discussed in Section 4. It is the mirror image of the density of e
t
and reconfirms

the intuition behind the method: large negative, but infrequent values of e
t
re-

quire high values of variance parameter HM
t

in order to compensate for the

G. Sandmann, S.J. Koopman / Journal of Econometrics 87 (1998) 271–301 279



Fig. 2. Effect of equalizing density slopes.

difference in density slopes in this region. The converse is represented by large
probability mass of HM

t
or less than n2/2.

Step 3 of the algorithm in Section 3.1 is accomplished by the simulation
smoother of de Jong and Shephard (1995). Details of this can be found in the
Appendix. We like to point out that, once the SV model is formulated in the
state space form, the Kalman filter smoother and the simulation smoother are
invariant to possible extensions of the basic SV model.

The quantity w(e) for the basic SV model is calculated as:

w(e)"
T
<
t/1

w(e
t
)"expG

T
+
t/1

l(e
t
)H

and

l(e
t
)"ln w(e

t
)"1

2Aln HI
t
#e

t
!eet#

e2
t

HI
t
B (7)

where HI
t
is the variance of the measurement disturbance of the approximating

model, for t"1,2, ¹. In practice w(e(i)) is a very small number and, therefore,
appropriate scaling is required for numerical stability. Note that w(e(i)) is the
ratio of the true density of the disturbances — ln(s2

1
) — to the Gaussian density. Its

expectation (estimated as the sample average of w(i)’s in Step 5 of the Algorithm)
gives that part of the likelihood surface which is not already captured by the
Gaussian approximation. The bias correction in Eq. (5) is due to the considera-
tion of the log likelihood function rather than the likelihood function itself.

3.3. Smoothing the volatility process

Once the model parameters have been estimated, interest might focus on
obtaining estimates of the volatility process throughout the sample. Unlike in
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4Reflecting the difference between the Bayesian approach and the classical approach in statistics.

the GARCH models — where knowledge of the model parameters is sufficient to
construct the volatility figures recursively — in the SV framework the latent
volatility can only be estimated. Furthermore, unlike in the Bayesian MCMC
framework — where the joint density of latent volatilities and model parameters
is readily available — in the MCL method the estimated parameters are treated
as fixed for the purposes of estimating volatility via the Kalman filter smoother.4

The linear Kalman filter smoother does not explicitly take account of the
non-Gaussianity in the measurement equation. However, when the Kalman
filter smoother is applied to the approximating Gaussian SV model, it is
effectively computing the posterior mode estimates of the volatility (Shephard
and Pitt, 1997; Durbin and Koopman, 1998). If the posterior mean is required,
Durbin and Koopman (1998) show that a computationally efficient algorithm is
given by

h
t@T

"y
t
!

N
+
i/1

f
t
e(i)
t
, f

t
"

w(e(i)
t
)

NwN
t

(8)

where h
t@T

is the volatility estimate, e(i)
t

is a draw from the importance density as
computed by the simulation smoother (see Step 3 of the algorithm of Sec-
tion 3.1), w(e(i)

t
)"expMl(e(i)

t
)N is defined in Eq. (7) and wN

t
"(1/N)+N

i/1
w(e(i)

t
). The

weights f
t

can be interpreted as the corrections for non-Gaussianity in the
measurement equation. It is worth stressing that Eq. (8) requires little additional
computing because the quantities e(i)

t
and w(e(i)

t
) are already evaluated by the

algorithm of Section 3.1.
Finally, the estimation error, h

t@T
!h

t
(where h

t
denotes the true volatility) is

O(1) which implies that treating exp(h
t@T

) as lognormal may lead to distortions
(Harvey and Shephard, 1993). These authors consider the following estimate of
the volatility process:

pJ 2
t
"pN 2

T
eht@T, pN 2

T
"¹~1

T
+
t/1

r2
t
e~ht@T, t"1,2, ¹ (9)

where the smoothed signal, h
t@T

is obtained from Eq. (8). Thus the estimation of
model parameters and the values of the latent volatility process are addressed
simultaneously in the MCL framework.

4. Finite sample performance

4.1. Simulation experiment

To assess the performance of the new method we conducted simulation
experiments following the design of Jacquier et al. (1994), thus facilitating direct
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comparison with the MCMC method. The range of parameter values
t"(pN , /, pg) is selected in the following manner. First, the values of the
autoregressive parameter / are set to 0.90, 0.95, and 0.98. This choice is
motivated by empirical studies which reported the values of the autoregressive
coefficient close to unity, ranging between 0.9 and 0.995. Secondly, for each
value of /, the values of pg are selected so that the coefficient of variation:

C»"

var(h)

E[h]2
"exp A

p2g
1!/2B!1

takes the values 10, 1, and 0.1. High values of the ratio of volatility variance to its
squared mean indicate pronounced relative strength of the stochastic volatility
process while low values of C» signify that the model is close to the one of
constant volatility. In fact, if preliminary exploratory analysis of the data from
a model with low C» (C»"0.1) was based only on the autocorrelation
structure of r2

t
or ln(r2

t
) the practitioner without a strong prior belief that the SV

model is the correct specification will be unable to distinguish between the SV
and a homoskedastic model. Nevertheless, the parameter triplets t

7
—t

9
are

included for completeness. The focus of interest is thus centered around para-
meter triplets t

4
—t

6
which correspond to the coefficient of variation close to

unity. Most of the empirical studies surveyed by JPR report parameter estimates
in this range. Finally, the values of the location parameter, pN are chosen such
that the expected variance

E[h]"pN 2expA
p2g

2(1!/2)B
is set to 0.0009. If the simulated data are regarded as weekly returns, this
corresponds to approximately 22% annualized variance. Note that JPR chose
a slightly different parameterization of the SV model (r

t
"e(1@2)ht e

t
, h

t
"

a#/h
t~1

#g
t
) but the intercept parameter pN is mapped into a via ln(pN 2)"

(1!/)~1a. This gives nine parameter triplets, t
i
"(a, /, pg)i, i"1,2, 9 the

values of which are reported in Table 2 in the row labelled ‘¹rue’. For each t
i
we

generate samples of length ¹"500, we estimate the model via MCL and via
QML and we compute means, standard deviations and mean squared errors of
the parameter estimates over K"500 simulated realisations of the process. In
these calculations the number of draws N used in the algorithm of Section 3.1 is
set to N"5.

Results from the sampling experiments are presented in Table 2 which is
divided into three panels in accordance with the coefficient of variation C».
Within each panel the true parameter values are displayed first. The results for
the Quasi-Maximum Likelihood estimator (QML) are reported second, fol-
lowed by the MCL estimator. Finally, JPR’s simulation results for the Bayes
(MCMC) estimator, their Table 7, are reproduced in the final row. The starting
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Table 2
Comparison of MCMC, QML and MCL estimators

CV"10 t
1

t
2

t
3

pg / a pg / a pg / a

True 0.675 0.900 !0.821 0.484 0.950 !0.411 0.308 0.980 !0.164
QML 0.703 0.884 !0.821 0.502 0.938 !0.410 0.321 0.970 !0.164

(0.17) (0.06) (0.03) (0.13) (0.04) (0.02) (0.10) (0.03) (0.01)
(0.029) (0.003) (0.001) (0.017) (0.002) (0.001) (0.010) (0.001) (0.000)

MCL 0.579 0.915 !0.837 0.436 0.953 !0.417 0.290 0.977 !0.166
(0.07) (0.02) (0.03) (0.06) (0.02) (0.02) (0.05) (0.02) (0.01)
(0.014) (0.001) (0.001) (0.005) (0.000) (0.001) (0.002) (0.000) (0.000)

MCMC 0.562 0.916 !0.679 0.460 0.940 !0.464 0.350 0.980 !0.190
(0.12) (0.03) (0.22) (0.06) (0.02) (0.16) (0.06) (0.01) (0.08)
(0.027) (0.001) (0.069) (0.004) (0.001) (0.028) (0.005) (0.000) (0.007)

CV"1 t
4

t
5

t
6

pg / a pg / a pg / a

True 0.363 0.900 !0.736 0.260 0.950 !0.368 0.166 0.980 !0.147
QML 0.417 0.845 !0.736 0.302 0.906 !0.368 0.203 0.942 !0.147

(0.21) (0.18) (0.02) (0.17) (0.18) (0.01) (0.15) (0.16) (0.01)
(0.049) (0.035) (0.000) (0.030) (0.033) (0.000) (0.025) (0.029) (0.000)

MCL 0.325 0.897 !0.745 0.233 0.930 !0.372 0.161 0.970 !0.148
(0.07) (0.10) (0.02) (0.07) (0.10) (0.01) (0.05) (0.07) (0.01)
(0.006) (0.010) (0.000) (0.003) (0.011) (0.000) (0.002) (0.004) (0.000)

MCMC 0.350 0.880 !0.870 0.280 0.920 !0.560 0.230 0.970 !0.220
(0.07) (0.05) (0.34) (0.07) (0.05) (0.34) (0.08) (0.02) (0.14)
(0.005) (0.003) (0.134) (0.005) (0.003) (0.152) (0.011) (0.001) (0.025)

CV"0.1 t
7

t
8

t
9

pg / a pg / a pg / a

True 0.135 0.900 !0.706 0.096 0.950 !0.353 0.061 0.980 !0.141
QML 0.319 0.350 !0.706 0.295 0.420 !0.353 0.266 0.449 !0.141

(0.31) (0.63) (0.01) (0.30) (0.62) (0.01) (0.30) (0.64) (0.00)
(0.132) (0.702) (0.000) (0.131) (0.669) (0.000) (0.133) (0.692) (0.000)

MCL 0.156 0.443 !0.709 0.136 0.526 !0.355 0.113 0.572 !0.142
(0.11) (0.62) (0.01) (0.10) (0.60) (0.01) (0.10) (0.60) (0.00)
(0.012) (0.592) (0.000) (0.012) (0.545) (0.000) (0.013) (0.524) (0.000)

MCMC 0.150 0.780 !1.540 0.120 0.840 !1.120 0.140 0.910 !0.660
(0.08) (0.19) (1.35) (0.07) (0.16) (1.15) (0.10) (0.12) (0.83)
(0.007) (0.051) (2.518) (0.006) (0.038) (1.911) (0.016) (0.019) (0.958)

Note: This table reports the results of the simulation experiments. For each set of parameter triplets t
i
"(pg,/,a)

i
,

samples of length ¹"500 of the basic SV model are generated K"500 times. The model is then estimated by
QML and MCL and the average estimated parameter values are presented. The standard deviations and mean
squared errors (in italic) are reported in parenthesis below. The results for the MCMC estimator are reproduced
from Jacquier et al. (1994), Table 7.
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parameter values for both, the QML and MCL optimization routines are
obtained from a two-dimensional grid search procedure which searches for an
optimum across the surface of the Gaussian log likelihood function ln ¸

G
(t).

The figures presented in Table 2 allow several conclusions to be drawn. The
experiment demonstrates that the MCL estimator exhibits similar efficiency as
the MCMC estimator across most parameter values. For the C»"10 and
C»"1 the mean squared errors on all parameters (except for / when C»"1)
are smaller for the MCL. When C»"1 the mean squared errors on / are
slightly larger, but the estimator exhibits lower bias (alas larger sample vari-
ance).

The QML estimator is found to be inefficient, thereby confirming the results
of JPR. Figs. 3 and 4 present the smoothed densities of the estimates of / and
pg for two triplets t

4
and t

5
. The MCL estimator is shown to exhibit a much

tighter sampling distribution then the QML estimator, a property also indicated
by smaller standard errors of the estimates.

Across the entire parameter space the standard errors of the QML estimator
are at least twice the size of the fully efficient MCL estimator while the bias is
nonnegligible. The efficiency of the QML estimator increases as the strength of
the SV process becomes more pronounced. For instance, for C»"10 the
sample standard error on /"0.95 is 0.04 while in the case of C»"1 the
standard error on /"0.95 increases fourfold to 0.18.

However, although we find QML to be inefficient, its performance is nowhere
as near as bad as reported by JPR. Same conclusion was reached by Breidt and
Carriquiry (1996) who also re-examined the final sample performance of the QML
estimator. Since Figs. 3 and 4 were constructed so as to correspond to JPR’s
Figs. 4 and 5, respectively, direct comparison reveals dramatic differences in the
performance of the same estimation technique. This raises the question of possible
inefficiencies in JPR’s QML estimation method such as poor starting values,
different convergence criteria, or inefficient implementation of the algorithm.

We also find that the performance of all three estimators deteriorates as C»

decreases. Comparison of the MCL and the MCMC estimators in this region
(C»"0.1) reveals that the MCL estimates of the long-run volatility level a (i.e.
pN ) are more efficient, but those of pg and / are less efficient than the correspond-
ing MCMC estimates. This can be explained by the fact that the dynamic
properties of the model are so weak (or the signal-to-noise ratio so small) in this
region that the data appear almost indistinguishable from a constant volatility
model.

The performance of the estimator is examined in cases when larger data sets
are available, results of which are presented in Table 3. For each of the para-
meter triplets t

4
—t

6
(corresponding to C»"1) K"500 samples of length

¹"2,000 were drawn and the simulation experiment repeated. Across all
parameters the standard errors are smaller by a factor of two, when compared to
the relevant entries in Panel 2, Table 2. The mean squared errors are similarly
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Fig. 3. Sampling distributions of MCL and the QML estimators; (a) /"0.9; t
4
, (b) pg"0.363;

t
4
.
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Fig. 4. Sampling distributions of MCL and the QML estimators; (a) /"0.95; t
5
, (b) pg"0.260;

t
5
.
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Fig. 5. S&P500: unconditional density and the density of the SV-t model.

5The results on N"5 are reproduced from Table 2, in greater detail.

reduced. Comparison with MCMC (alas based only on t
4
) reveals that the finite

sample efficiency is very similar. The mean squared errors are of the same order
of magnitude: with the MSE on pg larger, the MSE on / identical, and MSE on
a (i.e. pN ) being smaller.

As the number of draws N increases, the expectation of the MCL likelihood
function (5) can be calculated more precisely, thus leading to increased perfor-
mance. On the other hand the computational burden needs to be taken into
account. In our experience, a very small number of draws (N"5) is sufficient to
produce results comparable with the MCMC estimator while little can be
gained by increasing N from 20 to 40. This is illustrated in Table 4. We revert to
the original simulation study design of ¹"500 observations (with K"500
realisations of the process) and re-estimate the model for the central parameter
triplet, t

5
with a varying number of draws:5 N"5, N"20, N"40. Across all
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Table 3
Finite sample performance at sample length of ¹"2000

CV"1 t
4

t
5

t
6

pg / a pg / a pg / a

True 0.363 0.900 !0.736 0.260 0.950 !0.368 0.166 0.980 !0.147
QML 0.381 0.888 !0.736 0.268 0.945 !0.368 0.167 0.978 !0.147

(0.10) (0.05) (0.01) (0.06) (0.03) (0.01) (0.04) (0.01) (0.00)
(0.010) (0.003) (0.000) (0.004) (0.001) (0.000) (0.001) (0.000) (0.000)

MCL 0.317 0.913 !0.745 0.239 0.954 !0.372 0.158 0.980 !0.148
(0.03) (0.02) (0.01) (0.03) (0.01) (0.01) (0.02) (0.01) (0.00)
(0.003) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

MCMC 0.359 0.896 !0.762
(0.03) (0.02) (0.15)
(0.001) (0.000) (0.023)

Note: For each set of parameter triplets t
i
"(pg,/,a)

i
, samples of length ¹"2000 of the basic SV

model are generated K"500 times. The model is then estimated by QML and MCL and the
average estimated parameter values are presented. The standard deviations and mean squared
errors (in italic) are reported in parenthesis below. The results for the MCMC estimator are
reproduced from Jacquier et al. (1994), Table 9.

Table 4
The effect of varying the number of draws, N

t
5

pg / a

t
0

0.26 0.95 !0.368
tM 0.233 0.930 !0.372

MCL(N"5) se(tM ) (0.0664) (0.1027) (0.0126)
DtM !t

0
D 0.0272 0.0202 0.0456

mse(tM ) (0.0052) (0.0110) (0.0022)
tM 0.256 0.936 !0.372

MCL(N"20) se(tM ) (0.0583) (0.1003) (0.0126)
DtM !t

0
D 0.0044 0.0142 0.0452

mse(tM ) (0.0034) (0.0103) (0.0022)
tM 0.257 0.937 !0.372

MCL(N"40) se(tM ) (0.0490) (0.0993) (0.0126)
DtM !t

0
D 0.0029 0.0133 0.0452

mse(tM ) (0.0024) (0.0100) (0.0022)

Note: This table reports the results of the simulation experiment on a single set of parameter values,
t
5
. Samples of length ¹"500 of the basic SV model are simulated K"500 times and estimated by

MCL. Values 5, 20, and 40 in parenthesis behind the MCL label signify the number of draws, N,
employed by taking the expectation in Eq. (5). For each estimator the average parameters estimates,
the sample standard deviations, the absolute bias and the mean squared error are reported in the
rows labelled tM , se(tM ), DtM !t

0
D, mse(tM ), respectively. The results for MCL(N"5) are reproduced

from Table 2.
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6More detailed estimation results are reported in Table 7.
7We are grateful to Jon Danielsson for pointing out this procedure.

three parameters, /, pg and a (i.e. pN ) the comparison in terms of absolute bias and
standard deviation reveals a small improvement in accuracy when the number
of draws, N is increased from 5 to 20. However, further increasing N to 40 leads
to negligible improvement. Since the increase in accuracy occurs in the third
decimal place for model parameters we recommend setting N"5 in empirical
applications.

These results are very encouraging. They demonstrate that the MCL estimator
exhibits very satisfactory small sample performance which is directly comparable
to the fully efficient Bayesian MCMC method. The evidence also suggests that
these results can be achieved by using a very small number of draws.

4.2. S & P500 return series

The performance of the MCL estimator is further illustrated by fitting the
model to the seasonally adjusted (Gallant et al., 1992) S & P 500 returns. JPR
and Danielsson (1994b) has already utilized a subset of the data
(2/1/80—30/12/87, ¹"2,022 observations) to fit the basic SV model. Re-estima-
tion by MCL allows not only for a comparison of the point estimates but also
for the comparison of the computational requirement. The results of the estima-
tion are reported in the table below:6

a / pg Time min

MCL !0.00 0.96 0.16 1 : 21
MCMC !0.00 0.97 0.15 7 : 15
Danielsson’s MCL !0.00 0.97 0.15 10 : 45

The parameter estimates are almost identical across the three estimation
methods. The time requirement was calculated in the following manner.7 First,
Danielsson’s code was executed on our machine. The algorithm required
5:59 min to converge. On the other hand, starting at the same initial value, the
MCL estimation method required 0:58 min to achieve convergence. The figure
of 1:21 min in the above table for MCL was obtained by calibrating it to the time
requirement reported in Danielsson (1994b). These results suggest that estima-
tion via the MCL method is computationally more efficient than the MCMC
and the alternative importance sampling methods.

Secondly, the basic SV model was fitted to the entire data-set
(4/1/28—31/12/87, ¹"16,127), thus providing for a comparison with the SMM
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Table 5
S&P500 1928—1987: Estimation results

/ p2g ln pN 2 CV LogLik

SMM 0.976 0.009 !9.362 0.210 —
Full sample 0.977 0.030 !9.367 0.952 !34,610
Sub I 0.984 0.039 !9.315 2.441 !8,689
Sub II 0.876 0.117 !9.454 0.654 !8,799
Sub III 0.970 0.034 !9.579 0.760 !8,554
Sub IV 0.989 0.010 !9.219 0.630 !8,512

Note: This table reports the parameter estimates of the basic SV model when fitted to the adjusted
daily observations on the S&P500 stock index level, 1928—87. The row labelled ‘SMM’ reproduces
the estimates of Gallant et al. (1995), Table 2, row1. The correspondence to the notation of the
present paper is established by: /"a

1
, p2g"r2

w
, ln pN 2"2ln(10~2r

y
). The factor 10~2 appears

because we choose to work with percentage returns. The subsequent rows report the MCL estimates
for the full sample (4/1/28—31/12/87, ¹"16 127), and four sub-samples of equal length, ¹"4030:
Sub I (4/1/28—7/7/41), Sub II (8/7/41—30/11/55), Sub III (1/12/55—7/1/72), Sub IV(10/1/72—21/12/87).

(Gallant and Tauchen, 1996). The parameter estimates are reported in Table 5.
The resulting point estimates are very close to the SMM values obtained by
Gallant et al. (1995) except for the estimate of p2g . The sub-period analysis
reported in the remainder of Table 5 illustrates that the parameter estimates,
and in particular the implied C» are not stable across the sub-periods. This may
explain why Gallant et al. (1995) found the SV model to be incapable of
capturing the time series dynamics of the S & P500 index. It is not surprising
that, when a data set of roughly 60 yr of daily observations is used, some regime
switches may be present.

This application also demonstrates that large data-sets present no difficulty
for the estimation by MCL.

5. Further issues

Having shown that the MCL estimator exhibits satisfactory finite sample
performance we would now like to turn to the practical issues in SV model
estimation and indicate some of the interesting extensions of the basic SV model.

5.1. The inlier problem

Since our method, as much as QML, relies on the use of the linear state space,
taking the logarithms of squared mean adjusted returns becomes a problem
when zero, or small values are encountered. In particular, if the drift in of the
asset can be assumed to be zero (k

t
"0) or prices are recorded discretely then it
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is possible that some returns will be zero. In many practical applications,
however, equality of prices at two successive observations in time, leading to
zero returns, arise due to data irregularities. For instance, properly accounting
for holidays eliminates many ‘zero’ returns in most daily exchange rate series.
Deleting such observations from the sample eliminates the inlier problem.
Alternatively, the updating equations of the Kalman filter can be modified so as
to handle missing values (Harvey, 1989, p. 143).

If an inlier cannot be assumed to be an irregular observation there are three
alternatives of dealing with the problem. First, the sample mean of the series (or
some general ARMA specification) may be subtracted from the observations.
While the method may be feasible numerically (the resulting series may be
devoid of entries identically equal to zero) it does not solve the problem
conceptually. Secondly, Fuller (1996) suggests a transformation which mitigates
the inlier problem by shifting some probability mass towards the center of the
distribution:

ln*(r2
t
)"ln(r2

t
#js2

r
)!

js2
r

r2
t
#js2

r

where j is some subjectively chosen constant, e.g. 0.02, and s2
r

is the sample
variance of returns r

t
. Breidt and Carriquiry (1996) show that this transforma-

tion improves the performance of the QML estimator and mitigates the inlier
problem. This method, however, remains inefficient.

Finally, one may cut off the inliers by setting the observation at some value i:

ln*(r2
t
)"ln(r2

t
IMrtwiN)#ln i2IMrt:iN (10)

where IM >N
is the indicator function, and i is a small number. Invariably, the

choice of i is subjective but it is demonstrated below that Eq. (10) leads to
reasonably good MCL estimates for very small i.

To assess the performance of the MCL and QML methods across various
values of i we designed the following Monte Carlo experiment. For the para-
meter triplet t

5
we generated the basic SV model as before, except that the mean

equation disturbances, m
t
in Eq. (1) have now a 10% chance of taking the value

zero and 90% chance of being drawn from N(0,1). It is rarely the case in practical
applications that 10% of the sample are identically equal to zero but the
experiment has been designed to illustrate the behavior of the estimator in
extreme situations. The generated series was then transformed according to
Eq. (10) with ln(i2

i
) taking the values of !20, !30, !100, and !200. The

results of the simulations for QML and MCL are presented in Table 6 and
compared to those of Section 4.

It is apparent that the performance of QML leaves much to be desired. The
bias and the standard errors are very sensitive to the choice of i. As i is
decreases the performance deteriorates rapidly, leading to enormous biases in all
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Table 6
Sensitivity of QML and MCL estimators w.r.t. cut-off value i

pg / a

True t
5

0.26 0.95 !0.368

i
1
"4.54]10~5 0.966 0.836 !1.393

(0.29) (0.13) (1.14)
(0.584) (0.030) (2.359)

i
2
"3.06]10~7 0.888 0.912 !0.835

(0.12) (0.09) (0.88)
(0.409) (0.010) (0.987)

QML i
3
"1.93]10~22 0.848 0.948 !0.851

(0.10) (0.04) (0.65)
(0.356) (0.002) (0.654)

i
4
"3.72]10~44 0.849 0.949 !1.36

(0.10) (0.06) (1.73)
(0.358) (0.004) (3.980)

i
1
"4.54]10~5 0.396 0.869 !0.845

(0.14) (0.32) (0.70)
(0.039) (0.109) (0.715)

i
2
"3.06]10~7 0.411 0.867 !0.854

(0.13) (0.30) (0.55)
(0.040) (0.097) (0.537)

MCL i
3
"1.93]10~22 0.370 0.906 !0.601

(0.12) (0.21) (0.29)
(0.026) (0.046) (0.136)

i
4
"3.72]10~44 0.365 0.910 !0.575

(0.11) (0.20) (0.28)
(0.023) (0.042) (0.121)

Note: This table reports the results of the simulation experiment on a single set of parameter values,
t
5
. Samples of length ¹"500 of the basic SV model with 10% zero values are generated K"500

times and estimated by QML and MCL. Inliers are cutoff at i
i
where the cutoff constants i

1
—i

4
were chosen so as to correspond to ln(i2

i
)" !20, !30, !100 and !200.

three parameters. However, the decline in precision is not homogenous across
the three model parameters. Interestingly, for small i (e.g. i

4
"3.72]10~44) the

bias in the estimate of the autoregressive parameter / disappears, while the
biases in the estimates of a (i.e. pN ) and pg remain very large.

The results of the MCL estimator are considerably better. The bias and the
standard errors on all three model parameters decrease with the cutoff value i.
Comparison with the estimation results for the full sample, reveals that less
precision can be achieved when 10% of observations are zero (the mean squared
errors on all parameters are larger). This is not surprising, and results from the
fact that the likelihood function is ‘flatter’ in cases when many zero observations
are present.
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8This is different from the Harvey et al’s (1994) QML setup where the variance of the measure-
ment equation, H in the state space formulation is treated as a parameter.

5.2. Extensions of the basic SV model (I): Heavy ¹ails

The unconditional density of many financial series exhibits larger kurtosis
than can be captured by simply incorporating conditional heteroscedasticity
into a Gaussian process. The basic SV model can be generalized so as to allow
the mean equation disturbances, m

t
in Eq. (1) to follow a Student-t distribution

with l degrees of freedom. In this case the density of the transformed distur-
bances, e

t
"ln(m2

t
) is given by:

p
-/ t2l

(z)"ClA1#
ez

lB
(l`1@2)

e(z@2), Cl"
C(l#1/2)

JlnC(l/2)
. (3a)

The limit of Eq. (3a), as lPR, is of course, the ln(s2
1
) density (3) which can be

verified by taking logarithms of Eq. (3a), and expanding ln(1#x) as a Taylor
series.

A suitable importance sampling density is found by equalizing density slopes
as described in Section 3.1. The first derivative of the log density in Eq. (3a) is

d
1
(z)"1

2 G1!(l#1) C
ez

l#ezD H
so that the updating equations for HI

t
become

HI
t
"

2eL
t

eeL t [(l#1/l#eeL t)]!1
t"1,2, ¹. (6a)

Again, the Gaussian equations (6) are obtained in the limit, as lPR in
Eq. (6a). Moreover, Eq. (6a) automatically ensures the nonnegativity of HI

t
,

which can be verified by observing that the signs of the numerator and denomin-
ator are identical for any value of l and eL

t
. The computation of the MCL

likelihood (5) involves the quantities l(e(i)
t
) in Eq. (7) which are now constructed

via:

l(e
t
)"1

2 Aln 2nHI
t
#e

t
#

e2
t

HI
t

#2ln Cl!(l#1)ln A1#
eet
l B B (7a)

where HI
t

is given by Eq. (6a) after convergence. The number of degrees of
freedom, l enters the parameter vector t, over which the likelihood function is
maximised.8

To illustrate the validity of the method, we proceed to fitting the SV-t model
to the S & P500 return series, results of which are presented in Table 7. For ease
of reference the results of the basic SV are reproduced in the upper panel. The
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Table 7
Estimates of the SV model with fat-tailed disturbances

/ p2g ln pN 2 l CV LogLik LR

tK 0.960 0.026 !9.313 — 0.389 !4,311.6 26.6
se(tK ) (0.018) (0.009) (0.094) — — — —
tK 0.984 0.007 !9.498 7.634 0.255 !4,298.3 —
se(tK ) (0.010) (0.003) (0.122) (0.003) — — —

Note: This table reports the estimation results of the SV model where the mean equation distur-
bances follow a Student-t distribution with l degrees of freedom. The data-set consists of daily
observations on the S&P500 stock index level in the period 2/1/80—30/12/87. The return series are
prefiltered to remove the calendar effects as documented in Gallant et al. (1992). The sample length is
¹"2022 observations. The standard errors of (/,p2g ,l) are obtained from the numerical approxima-
tion to the Hessian, while the standard errors of the estimate of ln pN 2 are taken from the correspond-
ing diagonal element of the state covariance matrix, P

T
. The likelihood ratio test statistic follows the

s2
1

distribution.

9Parameter estimates of Table 2.5 were used to draw two samples of the SV process the density of
which is presented in the figure. The t-distributed random numbers were constructed in accordance
with the Bailey (1994) algorithm.

estimated number of degrees of freedom is 7.634, well in the range of empirical
estimates reported by Bollerslev (1987) using the GARCH-t model:
6.211—13.889. The likelihood ratio test statistic takes the value 26.6 which is
significant at the 1% level when compared to the relevant critical value of the
s2
1

distribution. Similarly, the standard error on l indicates the significance of
this parameter. The introduction of the Student-t distributed mean equation
disturbances reduces the value of the implied coefficient of variation, C» from
0.389 to 0.255. Intuitively, lower variance of the latent process is sufficient to
account for the variability in the series.

Finally, Fig. 5 demonstrates that the unconditional density of the S & P500
returns is closely approximated by the unconditional density from the estimated
SV-t model.9 By contrast, the unconditional density of the basic SV model (with
normal m

t
) does not capture as well the unconditional distribution of asset’s

returns. Thus the MCL estimator can be easily adjusted so as to incorporate
heavy tailed distributions.

5.3. Extensions of the basic SV model (III): Explanatory variables

The impact of exogenous explanatory variables on volatility has been exam-
ined in the context of the GARCH model by several authors (Baillie and
Bollerslev, 1989; Lamoureux and Lastrapes, 1990, 1993). Such explanatory
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10The data-set consists of the returns on the CRSP value-weighted US market index for the
period 3/7/62—31/12/87 resulting in ¹"6409 observations.

variables could be intervention dummies, seasonal components, or regressors
like option implied volatility, trade volume data, etc. The empirical validity of
the SV model with explanatory variables has been examined elsewhere (Ghysels
and Jasiak, 1996; Board et al., 1997) but it deserves to be mentioned here that the
MCL method need not be modified to handle this extension. More importantly,
since the explanatory variables enter the state vector (see Appendix A) the
dimensionality of the optimisation problem is unchanged. For instance, the
basic SV model with k explanatory variables requires the optimization in only
two directions, / and pg. This is very useful since multidimensional nonlinear
optimization is a formidable task.

5.4. Extensions of the basic SV model (I»): Non-zero correlation

When the linearizing transformation — which transforms the basic SV model
into the linear state space form — is applied, information regarding the correla-
tion between the return and the (log)variance process is lost. In the context of
QML estimation Harvey and Shephard (1996) shows that this information can
be recovered by conditioning on the signs of the returns. The augmented model
takes the form:

ln r2
t
"ln p2#h

t
#e

t
, e

t
#ln m2

t
,

h
t
#/h

t~1
#As

t
#gJ

t
, gJ

t
&IID(0,p2g!A2),

E(e
t
, gJ

t
)"Bs

t
(11)

where A"opg J2n~1, B"1.1061opg, st is the sign of r
t
, and o"Corr(m

t
, g

t
) is

the correlation between the two original residuals in Eq. (1). Conditional on the
signs, the distribution of the new transition equation disturbances, gJ

t
is no

longer Gaussian leading to the loss of efficiency of the MCL estimator. The
effect, however, will not be large since the symmetry of this density allows the
Kalman filter to match the first three moments.

No modifications to the MCL estimation procedure are required since the
filtering and smoothing algorithms — see Appendix A — are all written for the
correlated state space model. The correlation coefficient, o enters the parameter
vector t"(pg, /, o) over which the likelihood function is optimized. Fitting the
model to the CRSP data-set10 used by Nelson (1991) and Harvey and Shephard
(1996) gives the results in Table 8. Not surprisingly, the MCL parameter
estimates are not identically equal to the QML estimates reported by Harvey
and Shephard (1996). However, they reflect the general pattern of high volatility
persistence and large negative correlation between the return and the
(log)variance processes. Both, the likelihood ratio test statistic and the standard
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Table 8
Estimates of the SV model with nonzero correlation

/ p2g ln pN 2 o CV LogLik LR

tK 0.988 0.018 !10.017 — 1.11 !13,680 124
se(tK ) (0.003) (0.003) (0.136) — — — —
tK 0.985 0.021 !9.924 !0.375 0.99 !13,618 —
se(tK ) (0.003) (0.003) (0.109) (0.004) — — —

Note: This table reports the estimation results of the SV model where the mean and variance
equation disturbances are allowed to be correlated. The data-set consists of the returns on the CRSP
value-weighted US market index for the period 3/7/62—31/12/87 used by Nelson (1991) and Harvey
and Shephard (1996). The sample size is ¹"6409 observations. The standard errors of (/,p2g ,o) are
obtained from the numerical approximation to the Hessian, while the standard errors of the estimate
of ln pN 2 are taken from the corresponding diagonal element of the state covariance matrix, P

T
. The

likelihood ratio test statistic follows the s2
1

distribution.

error on oL indicate the statistical significance of the correlation coefficient. The
MCL estimates are less sensitive to the presence of correlation than the QML
estimators. Omitting o does not significantly alter the estimates of the remaining
parameters (/, pg, pN ). Furthermore, the standard errors on all parameters
estimates are smaller than the QML errors, reflecting the increased efficiency of
the estimator.

6. Conclusion

In this paper, the Monte Carlo likelihood (MCL) method of estimating
stochastic volatility (SV) models is implemented successfully. The represent-
ation of the SV model is in a linear state space form so the Kalman filter can
be employed to compute the Gaussian likelihood function via the prediction
error decomposition. However, due to the log chi-square disturbances in the
measurement equation of the SV model, the Gaussian likelihood will only
make up a part of the true likelihood function. The MCL estimator proposed
here approximates the remainder term via Monte Carlo simulation. As the
number of simulations N increases, the approximation becomes more accurate.
The finite sample performance of the MCL is examined in a simulation experi-
ment. The results indicate full efficiency of the estimator across a range
of possible parameter values even for very moderate simulation sizes such
as N"5.

Apart from the computational efficiency of the MCL method, we also
have exploited the linear representation of the SV model. The state space
formulation allows the SV model to be extended in a number of directions likely
to arise in empirical research. We have examined and implemented the following
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extensions in detail: fat-tailed distribution of the mean equation disturbances,
inclusion of explanatory variables and the nonzero correlation model. The
illustrations have shown that all these extensions can be handled by the MCL
straightforwardly. Finally, it is noticeable that these modifications do not
require any substantial changes to the methodology of MCL or any changes to
the Kalman filter smoother algorithms.
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Appendix A.

1. The general univariate state space model (Harvey, 1989) is:
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(m]m) are nonsingular, while the measurement
and transition equation disturbances may be contemporaneously corre-
lated with an (m]1) nonzero covariance matrix G
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. In case of the SV model,

the elements (or functions of the elements) of the parameter vector t"(/,pg,o)
enter into the appropriate elements of Q
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. The long-run

volatility level, pN (along with any explanatory variables) enters the state vector
a
t

which reduces the dimensionality of the nonlinear optimization problem
of maximizing the likelihood function with respect to the parameter vector;
see below. For instance, an correlated SV model with k explanatory variables,
zk
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t
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)@ is put into the state space form by defining
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where c
t
is (k]1), e

k
is a (k]1) vector of zeros, I

k
is the (k]k) identity matrix,

and s
t
is the sign of the return at time t. The basic SV model is obtained as

a special case by setting o"0 and k"1, z1
t
"1, ∀t.

The Kalman filter is given by
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for t"1,2, ¹. The recursions are initialized with a
0
"N(a

0
, P

0
) where P

0
is

the unconditional variance matrix of the state vector which may contain diffuse
elements. The parameter estimates for t are obtained by numerically optimizing
the Gaussian log likelihood function as given by
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The estimate of ln pN 2 is given by the relevant element of a
t
while the standard

errors are obtained from the relevant diagonal elements of P
t
(Harvey, 1989, p.

367).
2. The Kalman smoother (de Jong, 1988; Koopman, 1993) is used to con-

struct:
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quantities are obtained from the backwards recursions:
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3. A special version of de Jong and Shephard’s (1995) simulation smoother is

used to give draws of e(i) from p
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where the quantities eJ
t
and CI

t
are obtained from
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need only be

applied once since these quantities remain the same for each sample.
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